11,699 research outputs found

    Attractor neural networks storing multiple space representations: a model for hippocampal place fields

    Full text link
    A recurrent neural network model storing multiple spatial maps, or ``charts'', is analyzed. A network of this type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely diluted and fully connected limits are studied, and the storage capacity and the information capacity are found. The important parameters determining the performance of the network are the sparsity of the spatial representations and the degree of connectivity, as found already for the storage of individual memory patterns in the general theory of auto-associative networks. Such results suggest a quantitative parallel between theories of hippocampal function in different animal species, such as primates (episodic memory) and rodents (memory for space).Comment: 19 RevTeX pages, 8 pes figure

    RHESSI and SDO/AIA observations of the chromospheric and coronal plasma parameters during a solar flare

    Full text link
    X-ray and EUV observations are an important diagnostic of various plasma parameters of the solar atmosphere during solar flares. Soft X-ray and EUV observations often show coronal sources near the top of flaring loops, while hard X-ray emission is mostly observed from chromospheric footpoints. Combining RHESSI with simultaneous SDO/AIA observations, it is possible for the first time to determine the density, temperature, and emission profile of the solar atmosphere over a wide range of heights during a flare, using two independent methods. Here we analyze a near limb event during the first of three hard X-ray peaks. The emission measure, temperature, and density of the coronal source is found using soft X-ray RHESSI images while the chromospheric density is determined using RHESSI visibility analysis of the hard X-ray footpoints. A regularized inversion technique is applied to AIA images of the flare to find the differential emission measure (DEM). Using DEM maps we determine the emission and temperature structure of the loop, as well as the density, and compare it with RHESSI results. The soft X-ray and hard X-ray sources are spatially coincident with the top and bottom of the EUV loop, but the bulk of the EUV emission originates from a region without co-spatial RHESSI emission. The temperature analysis along the loop indicates that the hottest plasma is found near the coronal loop top source. The EUV observations suggest that the density in the loop legs increases with increasing height while the temperature remains constant within uncertainties.Comment: 23 pages, 6 figures, accepted for publication in Ap

    Study of e+e- -> H+H- at a 800 GeV Linear Collider

    Get PDF
    The production and decay of heavy charged Higgs bosons at a 800 GeV e+e- linear collider have been studied. The analysis of the H+H- -> tb tb, expected to be dominant in the MSSM, and H+H- -> W+h0 W-h0 decay modes leading to the same final state consisting of two W bosons and four b quarks, provides with a determination of the boson mass to 1 GeV and of the production cross section with 10% accuracy for 500 fb-1 of data.Comment: 4 pages, 1 figure, to appear in the Proceedings of the 5th Linear Collider Workshop Fermilab, October 200

    Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.Comment: 5 pages, 1 figure, to appear in the Proceedings of the 9th Int. Workshop on Vertex Detectors, Lake Michigan MI (USA), September~200

    Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare

    Get PDF
    We present observations of electron energization in magnetic reconnection outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58. During a time-interval of about 20 minutes, starting 40 minutes before the onset of the impulsive phase, two X-ray sources were observed in the corona, one above the presumed reconnection region and one below. For both of these sources, the mean electron distribution function as a function of time is determined over an energy range from 0.1~keV up to several tens of keV, for the first time. This is done by simultaneous forward fitting of X-ray and EUV data. Imaging spectroscopy with RHESSI provides information on the high-energy tail of the electron distribution in these sources while EUV images from SDO/AIA are used to constrain the low specific electron energies. The measured electron distribution spectrum in the magnetic reconnection outflows is consistent with a time-evolving kappa-distribution with Îș=3.5−5.5\kappa =3.5-5.5. The spectral evolution suggests that electrons are accelerated to progressively higher energies in the source above the reconnection region, while in the source below, the spectral shape does not change but an overall increase of the emission measure is observed, suggesting density increase due to evaporation. The main mechanisms by which energy is transported away from the source regions are conduction and free-streaming electrons. The latter dominates by more than one order of magnitude and is comparable to typical non-thermal energies during the hard X-ray peak of solar flares, suggesting efficient acceleration even during this early phase of the event.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Common-reflection-surface imaging of shallow and ultrashallow reflectors

    Get PDF
    We analyzed the feasibility of the common-reflection-surface (CRS) stack for near-surface surveys as an alternative to the conventional common midpoint (CMP) stacking procedure. The data-driven, less user-interactive CRS method could be more cost efficient for shallow surveys, where the high sensitivity to velocity analysis makes data processing a critical step. We compared the results for two field data sets collected to image shallow and ultrashallow reflectors: an example of shallow Pwave reflection for targets in the first few hundred meters, and an example of SH-wave reflection for targets in the first 10 m. By processing the shallow P-wave records using the CMP method, we imaged several nearly horizontal reflectors with onsets from 60 to about 250 ms. The CRS stack produced a stacked section more suited for a subsurface interpretation, without any preliminary formal and time-consuming velocity analysis, because the imaged reflectors possessed greater coherency and lateral continuity. With CMP processing of the SHwave records, we imaged a dipping bedrock interface below four horizontal reflectors in unconsolidated, very low velocity sediments. The vertical and lateral resolution was very high, despite the very shallow depth: the image showed the pinchout of two layers at less than 10 m depth. The numerous traces used by the CRS stack improved the continuity of the shallowest reflector, but the deepest overburden reflectors appear unresolved, with not well-imaged pinchouts. Using the kinematic wavefield attributes determined for each stacking operation, we retrieved velocity fields fitting the stacking velocities we had estimated in the CMP processing. The use of CRS stack could be a significant step ahead to increase the acceptance of the seismic reflection method as a routine investigation method in shallow and ultrashallow seismics

    Influence of a specific aquatic program on social and gross motor skills in adolescents with Autism Spectrum Disorders: Three case reports

    Get PDF
    Swimming pool activities revealed to be efficacious to train psychomotor skills and increase adaptive behaviors in children with Autism Spectrum Disorders (ASD). Therefore, the purpose of this study was to investigate the efficacy of a specific multi-systemic aquatic therapy (CI-MAT) on gross motor and social skills in three adolescents with Autism Spectrum Disorders (ASD). Methods: three adolescents with ASD of which two boys (M1 with a chronological age of 10.3 years and a mental age of 4.7 years; M2 with a chronological age of 14.6 and a mental age inferior to 4 years) and one girl (chronological age of 14.0 and a mental age inferior to 4 years). The study was divided into three phases: baseline, 12-week CI-MAT program and Post-Test. Participants were administered a battery of tests incorporating anthropometric measurements, gross motor development test and a social skills questionnaire before and after a 12-week MAT-CI program. Results: Subjects improved locomotors and object control skills following the CI-MAT program in a different way. Concerning social behaviors, the higher proportion of gains was observed in the sensitivity of other's presence and eye contact, for the contact domain, and in the comply turn for the relationship domain. Conclusions: The results of this study showed that the CI-MAT program was effective for the development of gross-motor skills and social behaviors in subjects with ASD. Moreover there is an urge to carry out a whole psychological assessment targeting both motor and adaptive development suitable to provide educational and vocational plans of exercises for people with ASD

    Convex Polytopes and Quasilattices from the Symplectic Viewpoint

    Get PDF
    We construct, for each convex polytope, possibly nonrational and nonsimple, a family of compact spaces that are stratified by quasifolds, i.e. each of these spaces is a collection of quasifolds glued together in an suitable way. A quasifold is a space locally modelled on Rk\R^k modulo the action of a discrete, possibly infinite, group. The way strata are glued to each other also involves the action of an (infinite) discrete group. Each stratified space is endowed with a symplectic structure and a moment mapping having the property that its image gives the original polytope back. These spaces may be viewed as a natural generalization of symplectic toric varieties to the nonrational setting.Comment: LaTeX, 29 pages. Revised version: TITLE changed, reorganization of notations and exposition, added remarks and reference
    • 

    corecore